Какая теплопроводность у воды низкая средняя высокая?

Содержание
  1. Удельная теплоемкость воды, количество тепла, теплоемкость строительных материалов, значения теплоемкости
  2. Теплопроводность водяного пара при различных температурах и давлениях
  3. Теплопроводность пара при высоких температурах
  4. Удельная теплоемкость воды
  5. Теплоемкость воды и климат Земли
  6. Неверные свойства теплоемкости воды
  7. Количество энтальпии
  8. Kvant. Тепловые свойства воды
  9. Теплоемкость воды в разных состояниях
  10. Колебательные степени свободы в твердой и жидкой воде
  11. Структура воды и льда
  12. Таинственный резервуар
  13. Аномалия плотности воды
  14. Вязкость воды
  15. Заключение
  16. Теплопроводность и коэффициент теплопроводности. Что это такое
  17. Коэффициент теплопроводности
  18. Коэффициент теплопроводности материалов
  19. Вода: электропроводность и теплопроводность. Единицы измерения электропроводности воды
  20. Вода как вещество
  21. Свойства воды
  22. Вода, как проводник электроэнергии
  23. Измерение электропроводности воды
  24. Сименс
  25. Теплопроводность воды
  26. Плотность воды
  27. Что такое окислительно-восстановительные свойства воды
  28. С чем вода способна реагировать
  29. Есть ли вода где-либо еще, кроме Земли?
  30. Как используют тепло- и электропроводность воды в практических целях

Удельная теплоемкость воды, количество тепла, теплоемкость строительных материалов, значения теплоемкости

Какая теплопроводность у воды низкая средняя высокая?

В таблице приведены теплофизические свойства водяного пара на линии насыщения в зависимости от температуры. Свойства пара указаны в таблице в диапазоне температур от 0,01 до 370 ° C.

Каждая температура соответствует давлению, при котором водяной пар насыщается. Например, при температуре пара 200 ° С его давление будет 1555 МПа или около 15,3 атм.

Удельная теплоемкость пара, теплопроводность и ее увеличение с повышением температуры. Плотность водяного пара также увеличивается. Пар становится горячим, тяжелым и вязким, с высокой удельной теплоемкостью, что положительно влияет на выбор пара в качестве теплоносителя в некоторых типах теплообменников.

Например, согласно таблице, удельная теплота пара C p   при 20 ° C составляет 1877 Дж / (кг · град), а при нагревании до 370 ° C теплоемкость пара увеличивается до 56520 Дж / (кг · град) ,

В таблице приведены следующие теплофизические свойства пара на линии насыщения:

  • давление паров при заданной температуре р · 10 -5 Па;
  • плотность паров ρ ″ , кг / м3;
  • удельная энтальпия (масса) h ″ , кДж / кг;
  • р , кДж / кг;
  • удельная теплоемкость для пара C p , кДж / (кг · град);
  • теплопроводность λ · 10 2 , Вт / (м · град);
  • температуропроводность а · 10 6 , м 2 / с;
  • динамическая вязкость μ · 10 6 , Па · с;
  • кинематическая вязкость ν · 10 6 , м 2 / с;
  • Нумер Прандтл Пар .

Удельная теплота испарения, энтальпия, температуропроводность и кинематическая вязкость пара уменьшается с ростом температуры. Динамическая вязкость и вандаловское число Прандта увеличиваются.

Быть осторожен! Теплопроводность в таблице указана в классе 10 2. Не забудьте поделить на 100! Например, теплопроводность пара при 100 ° С составляет 0,02372 Вт / (м · град).

Теплопроводность водяного пара при различных температурах и давлениях

В таблице приведены значения теплопроводности воды и пара при температурах от 0 до 700 ° С и давлениях от 0,1 до 500 атм. Размер теплопроводности Вт / (м · град).

Линия под значением в таблице означает фазовый переход воды в пар, то есть цифры под линией относятся к пару, а выше к воде. Из таблицы видно, что значение коэффициента и водяного пара увеличивается с увеличением давления.

Примечание: теплопроводность в таблице указана в 10 классе 3. Не забудьте поделить на 1000!

Теплопроводность пара при высоких температурах

В таблице приведены значения теплопроводности диссоциированного водяного пара в размерах Вт / (м · град) при температурах от 1400 до 6000 К и давлениях от 0,1 до 100 атм.

Согласно таблице, теплопроводность пара при высоких температурах значительно возрастает в диапазоне 3000 … 5000 К. При высоких давлениях достигается максимальный коэффициент теплопроводности при более высоких температурах.

Быть осторожен! Теплопроводность в таблице указана в степени 10 3. Не забудьте разделить на 1000!

В этом небольшом материале мы кратко рассмотрим одно из важнейших свойств нашей планеты для воды, ее теплоемкость .

Удельная теплоемкость воды

Мы даем краткое толкование этого термина:

Теплоемкость   вещества — это его способность накапливать тепло в себе. Эта величина измеряется количеством тепла, поглощаемого ею при нагревании до 1 ° C.

Например, теплоемкость воды составляет 1 дюйм / г или 4,2 Дж / г, а почвы — 14,5-15,5 ° C (в зависимости от тип почвы) колеблется от 0,5 до 0,6 дюйма (2, 1-2,5 Дж) на единицу объема и от 0,2 до 0,5 дюйма (или 0,8-2,1 Дж) на единицу объема масса (грамм)

Теплоемкость воды оказывает существенное влияние на многие аспекты нашей жизни, но в этом материале мы сосредоточимся на ее роли в формировании температурного режима планеты, а именно …

Теплоемкость воды и климат Земли

Теплоемкость   воды по абсолютной величине достаточно велика. Из приведенного выше определения следует, что он значительно превышает теплоемкость почвы нашей планеты. Из-за этой разницы в теплоемкости почва нагревается намного быстрее и охлаждается относительно океанических вод.

 Из-за более безразличного мирового океана колебания дневных и сезонных температур Земли не так велики, как если бы не было океанов и морей. Это означает, что в холодное время года вода нагревает Землю и охлаждает ее в тепле.

 Конечно, это воздействие наиболее заметно в прибрежных районах, но в глобальном среднем измерении оно затрагивает всю планету.

Конечно, многие факторы влияют на дневные и сезонные колебания температуры, но вода является одним из наиболее важных.

Увеличение амплитуды колебаний дневных и сезонных температур коренным образом изменит мир вокруг нас.

Например, хорошо известно, что камень теряет свою прочность и становится хрупким при резких колебаниях температуры. Конечно, «немногие» будут сами собой. Точно так же, по крайней мере, физические параметры нашего тела будут другими.

Неверные свойства теплоемкости воды

Теплоемкость воды имеет аномальные свойства. Оказывается, что с повышением температуры воды ее теплоемкость уменьшается, эта динамика сохраняется до 37 ° С, а с увеличением температуры теплоемкость начинает увеличиваться.

Этот факт содержит одно интересное утверждение. Условно говоря, сама природа на фоне воды определила 37 ° C как наиболее комфортную температуру тела человека, при условии, конечно, что соблюдаются все остальные факторы. В случае каких-либо динамических изменений температуры окружающей среды, температура воды стремится к 37 ° C

Энтальпия   — это свойство вещества, которое указывает количество энергии, которое может быть преобразовано в тепло.

Энтальпия   — это термодинамическое свойство вещества, которое указывает уровень энергии, запасенной в молекулярной структуре. Это означает, что хотя вещество может иметь энергию на земле, не все они могут быть преобразованы в тепло. Часть внутренней энергии всегда остается в содержании   и сохраняет свою молекулярную структуру.

 Некоторые вещества недоступны, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия   — это количество энергии, которое доступно для преобразования в тепло при определенной температуре и давлении.

 Единицы энтальпии   — британская тепловая единица или джоуль для энергии и Btu / фунт / Дж / кг для удельной энергии.

Количество энтальпии

  Общая энтальпия вещества   на основе заданной температуры. Эта температура   — значение, которое ученые и инженеры выбирают в качестве основы для расчетов. Это температура, при которой энтальпия вещества равна нулю.

 Другими словами, вещество не имеет доступной энергии, которая может быть преобразована в тепло. Эта температура отличается для разных веществ.

 Например, эта температура воды представляет собой тройную точку (О ° С), азот -150 ° С и хладагенты на основе метана и этана −40 ° С.

Если температура вещества выше заданной температуры или она переходит в газообразное состояние при данной температуре, энтальпия выражается в виде положительного числа.

 И наоборот, отрицательное число выражается при температуре ниже этой энтальпии вещества. Энтальпия используется в расчетах для определения разности уровней энергии между двумя состояниями.

 Это необходимо для настройки оборудования и определения эффективности процесса.

Энтальпия   часто определяется как полная энергия вещества, потому что она равна сумме его внутренней энергии в данном состоянии вместе с ее способностью выполнять работу (pv).

 В действительности, однако, энтальпия не указывает на общую энергию вещества при данной температуре выше абсолютного нуля (-273 ° C).

 Следовательно, вместо указания энтальпии   как общей теплоты вещества, более точно определите ее как общее количество доступной энергии вещества, которое может быть преобразовано в тепло.
H = U + pV

Вода является одним из самых удивительных веществ. Несмотря на широкое использование и широкое использование, это настоящий секрет природы. Кажется, что как одно из соединений кислорода вода должна обладать очень низкими свойствами, такими как замерзание, теплота испарения и т. Д. Но этого не происходит. Теплоемкость самой воды очень высокая.

Вода способна поглощать огромное количество тепла, и в то же время она практически не нагревается — это ее физическая особенность. вода примерно в пять раз выше теплоемкости песка, а железо в десять раз выше.

 Поэтому вода является естественным кулером.

 Его способность накапливать большое количество энергии позволяет сглаживать колебания температуры на поверхности Земли и регулировать тепловой режим по всей планете, и это происходит независимо от времени года.

Это уникальное свойство воды позволяет использовать его в качестве охлаждающей жидкости в промышленности и на ежедневной основе. Кроме того, вода обычно доступна и относительно дешева.

Что означает теплоемкость? Как известно из термодинамики, теплообмен всегда происходит от горячего тела к холодному.

 Речь идет здесь о прохождении определенного количества тепла, а температура обоих тел, характерная для их состояния, указывает направление этого обмена.

 В процессе металлического тела с водой одинаковой массы при одинаковых начальных температурах металл изменяет свою температуру в несколько раз больше, чем вода.

Если мы рассмотрим основную термодинамическую констатацию двух тел (изолированных от других) как постулат, то во время теплообмена одно сдается, а другое получает одинаковое количество тепла, тогда становится ясно, что металл и вода имеют совершенно разные теплоемкости.

Таким образом, теплоемкость воды (как и каждого вещества) является показателем, характеризующим способность данного вещества давать (или получать) некоторое количество во время охлаждения (нагревания) на единицу температуры.

Удельная теплоемкость вещества — это количество тепла, необходимое для нагрева единицы этого вещества (1 килограмм) на 1 градус.

Количество тепла, выделяемого или поглощаемого организмом, равно произведению удельной теплоемкости, массы и разности температур. Он измеряется в калориях. Одна калория — это ровно столько тепла, сколько достаточно, чтобы нагреть 1 г воды на 1 градус. Для сравнения: теплоемкость воздуха составляет 0,24 кал / г ∙ ° С, алюминия 0,22, железа 0,11, ртути 0,03.

Теплоемкость воды не постоянна. При повышении температуры от 0 до 40 градусов она немного уменьшается (с 1,0074 до 0,9980), в то время как для всех других веществ эта характеристика увеличивается в процессе нагревания. Кроме того, оно может уменьшаться с увеличением давления (на глубине).

Как известно, вода имеет три состояния агрегации — жидкость, твердое вещество (лед) и газ (пар). В то же время теплоемкость льда примерно в 2 раза ниже, чем у воды. В этом основное отличие воды от других веществ, удельная теплоемкость которых в твердом и расплавленном состоянии не изменяется. В чем секрет?

Дело в том, что лед имеет кристаллическую структуру, которая не сразу разрушается при нагревании. Вода содержит мелкие частицы льда, состоящие из нескольких частиц и называемые спутниками.

 Когда вода нагревается, часть выделяется на разрушение водородных связей в этих образованиях. Это объясняет чрезвычайно высокую теплоемкость воды.

 Полные связи между молекулами разрушаются только при переходе воды в пар.

Удельная теплоемкость при 100 ° С практически не отличается от температуры льда при 0 ° С. Это еще раз подтверждает правильность этого объяснения. Теплоемкость пара, а также теплоемкость льда в настоящее время изучаются гораздо лучше, чем у воды, поэтому ученые пока не пришли к общему мнению.

Kvant. Тепловые свойства воды

Какая теплопроводность у воды низкая средняя высокая?

Варламов С. Тепловые свойства воды //Квант. — 2002. — № 3. — С. 10-12.

По специальной договоренности с редколлегией и редакцией журнала “Квант”

Теплоемкость воды в разных состояниях

При постепенном повышении температуры и сохраняющемся внешнем давлении вода последовательно переходит из одного фазового состояния в другое: лед-вода-пар.

Известно, что водяной пар при температурах 300 – 400 К имеет молярную теплоемкость (при постоянном объеме) Cv = 3R ≈ 25 Дж/(моль·К).

Величина 3R соответствует теплоемкости идеального многоатомного газа, имеющего шесть кинетических степеней свободы — три поступательные и три вращательные.

Это означает, что колебательные степени свободы самих молекул воды в этом диапазоне температур еще не включены. Естественно, что при более низких температурах они не включены тем более.

Удельная теплоемкость воды в жидком состоянии, равная 4200 Дж/(моль·К), соответствует молярной теплоемкости 75,9 Дж/(моль·К) ≈ 9,12R.

На один моль атомов (и кислорода, и водорода), входящих в состав жидкой воды, приходится около 3,04R — вода формально подчиняется закону Дюлонга и Пти для твердых тел, хотя и не является твердым телом. На это обстоятельство стоит обратить пристальное внимание!

Молярная теплоемкость льда при температуре 273 К равна примерно 4,5R, т.е. вдвое меньше, чем для жидкой воды. Классическое объяснение теплоемкости твердых тел основано на предположении, что каждый атом в составе твердого тела имеет три колебательные степени свободы.

Атомы не имеют вращательных степеней свободы, поэтому, в соответствии с правилом о равнораспределении энергии по степеням свободы, молярная теплоемкость атомов, входящих в состав твердого тела, равна 3R и не зависит от температуры.

Это правило действительно выполняется при достаточно высоких температурах для большинства твердых тел и носит название закона Дюлонга и Пти.

Колебательные степени свободы в твердой и жидкой воде

Существуют так называемые ориентационные и трансляционные колебания относительно положения равновесия молекулы в структуре вещества.

(Раньше уже было отмечено, что колебательные степени свободы самих молекул воды при температурах ниже 400 К еще не включены.

) Давайте подсчитаем, сколько степеней свободы может иметь молекула воды, если она совершает независимые от других молекул движения.

Молекула воды из своего положения равновесия может поступательно смещаться в трех взаимно перпендикулярных направлениях и поворачиваться на небольшие углы вокруг трех взаимно перпендикулярных осей вращения, сохраняя в среднем по времени свое пространственное положение и свою ориентацию.

Таким образом, каждая молекула воды теоретически может иметь шесть колебательных степеней свободы. Если исходить из закона равнораспределения энергии, то эти шесть колебательных степеней свободы соответствуют молярной теплоемкости 6R.

Напомним, что на один моль молекул в жидкой воде приходится теплоемкость около 9R, а на тот же моль замерзших молекул — около 4,5R. Величина 6R больше теплоемкости льда, но меньше теплоемкости жидкой воды.

Значит, в структуре льда часть возможных колебательных степеней свободы молекул воды не задействована, а в структуре жидкой воды молекулы имеют какой-то дополнительный резервуар для запасания энергии при повышении температуры.

Что же это за таинственный резервуар, который мы обнаружили? Запомним, что мы задали себе такой вопрос, но пока отложим поиск ответа на него.

Структура воды и льда

Молекулы воды, в целом электрически нейтральные (не заряженные), имеют электрический дипольный- момент. Грубо говоря, положительные заряды находятся на атомах водорода, а отрицательным зарядом заряжен атом кислорода. Угол, который составляют между собой отрезки, соединяющие атом кислорода с атомами водорода в молекуле воды, равный 104,5°, близок к 120° и к тетраэдрическому углу 109,5°.

Эти две особенности строения молекулы воды ответственны за устройство льда и воды и за особые термодинамические свойства воды-жидкости и воды-льда. Молекулы воды, притягиваясь своими противоположно заряженными частями, могут образовать кластеры (объединения молекул) из очень большого числа молекул.

Связь между двумя соседними молекулами при таком объединении называется водородной связью (атом водорода одной молекулы приближен к атому кислорода другой молекулы). Энергия такой связи характеризуется глубиной потенциальной ямы, в которую как бы помещают друг друга молекулы, образовав такое объединение.

В жидкой и твердой воде энергия водородной связи составляет примерно 2·104 Дж/моль. (Это во много раз больше величины RT ≈ 2,5·103 Дж/моль.)

На одну молекулу, находящуюся в структуре льда, в среднем приходится четыре с половиной колебательных степени свободы. Можно предположить, что часть молекул имеет свои «законные» 6 степеней, а какая-то часть имеет меньшее количество степеней свободы. Возможно, что часть колебательных степеней свободы являются общими, т.е. одна степень свободы приходится на две (или более) молекулы.

В сплошном кристалле льда молекулы воды образуют сложную пространственную ажурную структуру с пустотами, напоминающую структуру стенок мыльных пузырей в пене. Какие положения молекул в структуре соответствуют большему, а какие меньшему числу степеней свободы, или как две (или больше) молекулы вместе колеблются в решетке, можно только догадываться.

Существенное увеличение числа колебательных степеней свободы — их «растормаживание» — возникает при плавлении льда, в результате которого упорядоченная структура молекул воды в заметной степени разрушается. На это разрушение указывает большая плотность воды в сравнении с плотностью льда.

Кстати, на то что эта структура не рушится полностью сразу после плавления льда, указывает тот факт, что в диапазоне температур от 0°С до 4°С плотность воды продолжает увеличиваться! Для большинства веществ и материалов переход твердое тело — жидкость сопровождается уменьшением плотности.

При переходе лед — вода разрушается пространственная ажурная кристаллическая структура льда, и обломки занимают меньший объем. (Так же изменяется и объем здания при землетрясении.) Чем сильнее трясти, тем на меньшие осколки будет разрушена структура и тем плотнее будет жидкость (до 4°С).

Затем начинает доминировать другой фактор — конденсированные тела при повышении температуры расширяются. Теплоемкость при переходе твердое тело — жидкость скачком повышается, так как буквально размораживаются дополнительные колебательные степени свободы.

Но, как мы помним, их «растормаживания» недостаточно для того, чтобы обеспечить воде молярную теплоемкость около 9R.

Расширение тел при нагревании сопровождается работой по преодолению сил притяжения друг к другу удаленных молекул. Эти силы приводят к существованию внутреннего давления в конденсированных телах.

Оценку внутреннего давления для воды можно получить, если вычислить лапласовское давление внутри пузырька с радиусом, равным диаметру молекулы. Для воды это давление равно примерно 4,6·108 Па. Вдали от температуры фазового перехода лед — вода коэффициент объемного расширения воды равен 0,0007 К-1.

Работа против сил внутреннего давления при нагреве 1 моля воды на 1 кельвин равна 5,8 Дж, или около 0,7R. Сложим теперь все учтенные нами до этого момента теплоемкости. Полученная нами величина 6R + 0,7R = 6,7R все равно меньше реально наблюдаемой теплоемкости воды порядка 9R.

(Коэффициент объемного расширения льда при температуре 273 К равен 0,00016 К-1, поэтому оценка вклада работы по преодолению сил внутреннего давления в теплоемкость льда равна 0,16R.)

Таинственный резервуар

Вот и пришло время вернуться к вопросу о том, какой же таинственный резервуар запасания энергии при повышении температуры воды работает в дополнение ко всем возможным колебательным степеням свободы молекул воды.

По-видимому, дополнительные затраты энергии на повышение температуры воды связаны с продолжающимся разрушением той самой ажурной решетки льда, т.е. энергия расходуется на разрыв связей между молекулами. Совпадение теплоемкости воды с величиной, которая фигурирует в законе Дюлонга и Пти, таким образом, следует признать случайным.

Давайте грубо оценим соотношение между количеством молекулярных связей, которые рвутся при плавлении льда, и количеством связей, которые рвутся при повышении температуры воды от 0°С до 100°С и при испарении воды.

Разрыв большей части связей происходит при испарении воды. Удельная теплота испарения воды при атмосферном давлении равна 2,3 МДж/кг, причем из этой величины примерно 0,17 МДж/кг приходится на работу, которую расширяющийся водяной пар совершает против сил атмосферного давления (на разрыв связей остается 2,13 МДж/кг).

Удельная теплота плавления льда равна 0,34 МДж/кг. Количество теплоты, которое нужно, чтобы нагреть 1 кг воды на 100°С, равно 0,42 МДж/кг, причем из этого количества только около одной четверти приходится на недостающую часть теплоемкости (примерно 0,107 МДж/кг).

По нашим оценкам получается, что на разрыв всех связей тратится приблизительно 2,56 МДж/кг.

Итак, по мере нагрева сначала 13% связей рвутся при таянии льда, затем 4% связей рвутся в процессе нагрева воды от 0°С до 100°С, а оставшиеся 83% связей рвутся при испарении воды. Случайное совпадение — 0,04% связей рвутся при нагреве воды на 1 кельвин — привело к тому, что жидкая вода формально подчиняется закону Дюлонга и Пти.

Самый существенный вывод, который можно сделать на основе проведенных таков: структура воды в диапазоне температур от 0°С до 100°С более чем на 80% повторяет структуру льда.

Если учесть, что на одну водородную связь приходится примерно 2·104 Дж/моль энергии, то при испарении воды тратится столько энергии, что на каждую испарившуюся молекулу приходится примерно по 2 разорванные водородные связи.

Это означает, что молекулы в жидкой воде в среднем занимают положения и ориентации, соответствующие тетраэдрической пространственной структуре типа алмаза.

(Экспериментальные данные, полученные с помощью рентгеноструктурного анализа, нейтронографии и других физических методов, позволяют утверждать, что трехмерная приближенно тетраэдрическая сетка водородных связей существует и у льда, и у жидкой воды.)

Аномалия плотности воды

Как известно, вода при атмосферном давлении в диапазоне температур от 0°С до 4°С увеличивает свою плотность. По-видимому, при 0°С в жидкой воде имеется очень много островков с сохранившейся структурой льда.

Каждый из этих островков при дальнейшем увеличении температуры испытывает тепловое расширение, но одновременно с этим уменьшаются количество и размеры этих островков вследствие продолжающегося разрушения их структуры. При этом часть объема воды между островками имеет другой коэффициент расширения.

К сожалению, этот коэффициент невозможно измерить отдельно. Однако можно попытаться его оценить косвенными методами. Из данных справочника известно, что скорость звука в воде при 273 К примерно в 2,5 раза меньше, чем скорость продольных звуковых волн во льду.

Тепловое расширение происходит вследствие повышения средней энергии поступательного движения молекул и должно быть обратно пропорционально жесткости материала или прямо пропорционально его сжимаемости.

Скорость звука пропорциональна корню квадратному из отношения жесткости материала (модуля Юнга) к его плотности (плотности воды и льда практически совпадают). В структуре воды по сравнению со структурой льда изменилось только 13%, а скорость звука упала в 2,5 раза, следовательно, сжимаемость межостровковой воды примерно в (2,5)2/0,13 = 48 раз больше сжимаемости льда.

Попробуем оценить, на сколько должен был бы измениться объем жидкости за счет разрыва 0,04% связей (нагрев от 0°С на 1°С), если предположить, что тенденция к уменьшению объема за счет разрыва связей будет такая же, как и при таянии льда, а тенденция к расширению объема островков будет такой же, как у твердого льда вблизи температуры плавления.

Учтем также расширение межостровковой воды. При таянии льда плотность увеличивается на 9% (при этом порвались всего 13% связей); значит, увеличение плотности при разрыве 0,04% связей должно составить величину порядка +0,028%.

Лед при нагреве на 1 градус вблизи температуры 273 К расширяется в объеме на 0,016%; значит, плотность должна уменьшиться на 0,87 от этой величины (-0,014%). Расширение водной межостровковой части при нагреве на один градус приведет к изменению плотности на -48·0,13·0,016% = -0,01%.

Итоговая оценка дает +0,004%, а на самом деле плотность воды при повышении температуры на один градус выше точки плавления изменяется на +0,006%, т.е. примерно в полтора раза больше. Сложность ситуации состоит в том, что вклады противоположного знака имеют близкие абсолютные величины.

В таких случаях принято говорить, что порядок полученной оценки близок к тому, что наблюдается на самом деле (отличается меньше чем на единицу), а с учетом грубости исходных предположений можно считать, что порядки величин просто совпадают.

Вязкость воды

Еще одна физическая величина, связанная со структурой воды, имеет особенную зависимость от температуры – это вязкость.

Вязкость воды уменьшается при изменении температуры от 0°С до 100°С в семь раз, тогда как вязкости большинства жидкостей с неполярными молекулами, не имеющими, соответственно, водородных связей, уменьшаются при таком же изменении температур всего в два раза! Спирты, молекулы которых являются полярными, как и молекула воды, тоже изменяют вязкость в 5-10 раз при таком изменении температуры.

Исходя из нашей оценки количества разорванных связей при нагревании воды от 0°С до 100°С (порядка 4%), следует признать, что подвижность воды и ее малая вязкость обеспечиваются весьма малой долей всех молекул.

Заключение

Таким образом, необычное поведение различных характеристик воды при изменении температуры от 0°С до 100°С говорит о ее уникальных свойствах и дает повод думать, что Природа неспроста использовала воду в качестве элемента биологических структур, который не может быть заменен никаким другим растворителем.

Теплопроводность и коэффициент теплопроводности. Что это такое

Какая теплопроводность у воды низкая средняя высокая?

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной.

Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой.

Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом».

В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С.

Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло.

Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов.

Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2.

, то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт.

Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина — доски0,150
Древесина — фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки — засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки — набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Вода: электропроводность и теплопроводность. Единицы измерения электропроводности воды

Какая теплопроводность у воды низкая средняя высокая?

Кто знает формулу воды еще со времен школьной поры? Конечно же, все. Вероятно, что из всего курса химии у многих, кто потом не изучает ее специализированно, только и остается знание того, что обозначает формула H2O. Но сейчас мы максимально подробно и глубоко постараемся разобраться, что такое вода? Какие ее главные свойства и почему именно без нее жизнь на планете Земля невозможна.

Вода как вещество

Молекула воды, как мы знаем, состоит из одного атома кислорода и двух атомов водорода. Ее формула записывается так: H2O.

Данное вещество может иметь три состояния: твердое – в виде льда, газообразное – в виде пара, и жидкое – как субстанция без цвета, вкуса и запаха.

Кстати, это единственное вещество на планете, которое может существовать во всех трех состояниях одновременно в естественных условиях. Например: на полюсах Земли – лед, в океанах – вода, а испарения под солнечными лучами – это пар. В этом смысле вода аномальна.

Еще вода – это самое распространенное вещество на нашей планете. Она покрывает поверхность планеты Земля почти на семьдесят процентов – это и океаны, и многочисленные реки с озерами, и ледники. Большая часть воды на планете соленая. Она непригодна для питья и для ведения сельского хозяйства. Пресная вода составляет всего два с половиной процента от всего количества воды на планете.

Вода – это очень сильный и качественный растворитель. Благодаря этому химические реакции в воде проходят с огромной скоростью. Это же ее свойство влияет на обмен веществ в человеческом организме. Общеизвестный факт, что тело взрослого человека на семьдесят процентов состоит из воды. У ребенка этот процент еще выше.

К старости этот показатель падает с семидесяти до шестидесяти процентов. Кстати, эта особенность воды наглядно демонстрирует, что основой жизни человека есть именно она. Чем воды в организме больше – тем он здоровее, активнее и моложе. Потому ученые и медики всех стран неустанно твердят, что пить нужно много.

Именно воду в чистом виде, а не заменители в виде чая, кофе или других напитков.

Вода формирует климат на планете, и это не преувеличение. Теплые течения в океане обогревают целые континенты.

Это происходит за счет того, что вода поглощает очень много солнечного тепла, а потом отдает его, когда начинает остывать. Так она регулирует температуру на планете.

Многие ученые говорят, что Земля давно бы остыла и стала камнем, если бы не наличие такого количества воды на зеленой планете.

Свойства воды

У воды есть много очень интересных свойств.

Например, вода – это самое подвижное вещество после воздуха. Из школьного курса многие, наверняка, помнят такое понятие, как круговорот воды в природе. Например: ручеек испаряется под воздействием прямых солнечных лучей, превращается в водяной пар.

Далее, этот пар посредством ветра, переносится куда-либо, собирается в облака, а то и в грозовые тучи и выпадает в горах в виде снега, града или дождя. Далее, с гор ручеек вновь сбегает вниз, частично испаряясь.

И так – по кругу – цикл повторяется миллионы раз.

Также у воды очень высокая теплоемкость. Именно из-за этого водоемы, тем более океаны, очень медленно остывают при переходе от теплого сезона или времени суток к холодному. И наоборот, при повышении температуры воздуха вода очень медленно нагревается. За счет этого, как и упоминалось выше, вода стабилизирует температуру воздуха на всей нашей планете.

После ртути вода обладает самым высоким значением поверхностного натяжения. Нельзя не заметить, что случайно пролитая на ровной поверхности капля иногда становится внушительным пятнышком. В этом проявляется тягучесть воды.

Еще одно свойство проявляется у нее при понижении температуры до четырех градусов. Как только вода остывает до этой отметки, она становится легче. Поэтому лед всегда плавает на поверхности воды и застывает корочкой, покрывая собой реки и озера.

Благодаря этому в водоемах, замерзающих зимой, не вымерзает рыба.

Вода, как проводник электроэнергии

Вначале стоит узнать о том, что такое электропроводность (воды в том числе). Электропроводность – это способность какого-либо вещества проводить через себя электрический ток. Соответственно, электропроводность воды – это возможность воды проводить ток.

Эта способность непосредственно зависит от количества солей и иных примесей в жидкости. Например, электропроводность дистиллированной воды почти сведена к минимуму из-за того, что такая вода очищена от различных добавок, которые так нужны для хорошей электропроводности.

Отличный проводник тока – это вода морская, где концентрация солей очень велика. Еще электропроводность зависит от температуры воды. Чем значение температуры выше – тем большая электропроводность у воды.

Эта закономерность выявлена благодаря множественным опытам ученых-физиков.

Измерение электропроводности воды

Есть такой термин – кондуктометрия. Так называют один из методов электрохимического анализа, основанного на электрической проводимости растворов.

Применяют этот метод для определения концентрации в растворах солей или кислот, а также для контроля состава некоторых промышленных растворов. Вода обладает амфотерными свойствами.

То есть в зависимости от условий она способна проявлять как кислотные, так и основные свойства – выступать и в роли кислоты, и в роли основания.

Прибор, который используют для этого анализа, имеет очень сходное название – кондуктометр. С помощью кондуктометра измеряется электропроводность электролитов, находящихся в растворе, анализ которого ведется. Пожалуй, стоит объяснить еще один термин – электролит.

Это вещество, которое при растворении или плавлении распадается на ионы, за счет чего впоследствии проводится электрический ток. Ион – это электрически заряженная частица. Собственно, кондуктометр, взяв за основу определенные единицы электропроводности воды, определяет ее удельную электропроводность.

То есть он определяет электропроводность конкретного объема воды, взятого за начальную единицу.

Еще до начала семидесятых годов прошлого столетия для обозначения проводимости электричества использовали единицу измерения “мо”, это была производная от другой величины – Ома, являющейся основной единицей сопротивления. Электропроводимость – это величина, обратно пропорциональная сопротивлению. Сейчас же она измеряется в Сименсах. Получила свое название данная величина в честь ученого-физика из Германии – Вернера фон Сименса.

Сименс

Сименс (обозначаться может как См, так и S) – это величина, обратная Ому, являющаяся единицей измерения электрической проводимости. Один См равен электрической проводимости любого проводника, сопротивление которого равно 1 Ом. Выражается Сименс через формулу:

  • 1 См = 1 : Ом = А : В = кг−1·м−2·с³А², где А – ампер,

    В – вольт.

Теплопроводность воды

Теперь поговорим о том, что такое теплопроводность. Теплопроводность – это способность какого-либо вещества переносить тепловую энергию.

Суть явления заключается в том, что кинетическая энергия атомов и молекул, что определяют температуру данного тела или вещества, передается другому телу или веществу при их взаимодействии.

Иначе говоря, теплопроводность – это теплообмен между телами, веществами, а также между телом и веществом.

Теплопроводность у воды также очень высока. Люди ежедневно используют это свойство воды, сами того не замечая. Например, наливая холодную воду в тару и остужая в ней напитки или продукты. Холодная вода забирает тепло у бутылки, контейнера, взамен отдавая холод, возможна и обратная реакция.

Теперь это же явление легко можно представить в масштабе планеты. Океан нагревается в течение лета, а потом – с наступлением холодов, медленно остывает и отдает свое тепло воздуху, тем самым обогревая материки. Остыв за зиму, океан начинает очень медленно нагреваться по сравнению с землей и отдает свою прохладу изнывающим от летнего солнца материкам.

Плотность воды

Выше рассказывалось о том, что рыба живет зимой в водоеме благодаря тому, что вода застывает корочкой по всей их поверхности. Мы знаем, что в лед вода начинает превращаться при температуре в ноль градусов. Из-за того, что плотность воды больше, чем плотность льда, лед всплывает и застывает по поверхности.

Что такое окислительно-восстановительные свойства воды

Также вода при разных условиях способна быть и окислителем, и восстановителем. То есть вода, отдавая свои электроны, заряжается положительно и окисляется. Или же приобретает электроны и заряжается отрицательно, значит, восстанавливается.

В первом случае вода окисляется и называется мертвой. Она обладает очень мощными бактерицидными свойствами, только вот пить ее не надо. Во втором случае вода живая. Она бодрит, стимулирует организм на восстановление, несет энергию клеткам.

Разница между этими двумя свойствами воды выражается в термине “окислительно-восстановительный потенциал”.

С чем вода способна реагировать

Вода способна реагировать почти со всеми веществами, которые существуют на Земле. Единственное, что для возникновения этих реакций нужно обеспечить подходящую температуру и микроклимат.

Например, при комнатной температуре вода отлично реагирует с такими металлами, как натрий, калий, барий – их называют активными. С галогенами – это фтор, хлор. При нагревании вода отлично реагирует с железом, магнием, углем, метаном.

При помощи различных катализаторов вода вступает в реакцию с амидами, эфирами карбоновых кислот. Катализатор – это вещество, словно бы подталкивающее компоненты к взаимной реакции, ускоряющее ее.

Есть ли вода где-либо еще, кроме Земли?

Пока ни на одной планете Солнечной системы, кроме Земли, воды не обнаружено. Да, предполагают о ее присутствии на спутниках таких планет-гигантов, как Юпитер, Сатурн, Нептун и Уран, но пока точных данных у ученых нет.

Существует еще одна гипотеза, пока не проверенная окончательно, о подземных водах на планете Марс и на спутнике Земли – Луне.

Касательно Марса вообще выдвинуто ряд теорий о том, что когда-то на этой планете был океан, и его возможная модель даже проектировалась учеными.

Вне Солнечной системы существует множество больших и малых планет, где, по догадкам ученых, может быть вода. Но пока нет ни малейшей возможности убедиться в этом наверняка.

Как используют тепло- и электропроводность воды в практических целях

Ввиду того, что вода обладает высоким значением теплоемкости, ее используют в теплотрассах в качестве теплоносителя. Она обеспечивает передачу тепла от производителя к потребителю. Как отличный теплоноситель воду используют и многие атомные электростанции.

В медицине лед используют для охлаждения, а пар – для дезинфекции. Так же лед используют в системе общественного питания.

Во многих ядерных реакторах воду используют как замедлитель, для успешного протекания цепной ядерной реакции.

Воду под давлением используют для раскалывания, проламывания и даже для резки горных пород. Это активно используется при строительстве туннелей, подземных помещений, складов, метро.

Сантехника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: