Резисторы их виды и обозначения на схемах

Содержание
  1. Что такое резистор, виды и роль в электроцепи, проверка мультиметром
  2. Что такое резистор и для чего нужен
  3. Виды резисторов по характеру сопротивления
  4. По назначению
  5. Виды резисторов по способу изготовления и их особенности
  6. Проволочные
  7. Непроволочные
  8. Как проверить резистор
  9. Резисторы
  10. Что такое резистор?
  11. Условные обозначения и номиналы резисторов на схеме
  12. Переменные резисторы
  13. Номинальная мощность резисторов
  14. Чем полезны резисторы?
  15. «Нагрузка» на принципиальных схемах
  16. Анализ резисторных схем
  17. Материалы, из которых изготавливаются резисторы
  18. Проволочные резисторы
  19. Металлопленочные резисторы
  20. Металлооксидные пленочные резисторы
  21. Фольговые резисторы
  22. Углеродные композиционные резисторы
  23. Углеродные пленочные резисторы
  24. Ключевые показатели эффективности (KPI)
  25. Резюме
  26. Теги
  27. Резисторы | маркировка резисторов ⋆ diodov.net
  28. Постоянные резисторы
  29. Подстроечные резисторы
  30. Переменные резисторы
  31. Условное графическое обозначение (УГО) резисторов
  32. Мощность рассеивания резистора
  33. Классы точности и номиналы резисторов
  34. Маркировка резисторов
  35. Цветовая маркировка резисторов
  36. Маркировка SMD резисторов
  37. Что такое резистор
  38. Виды резисторов
  39. Постоянные резисторы
  40. Термисторы
  41. Варисторы
  42. Фоторезисторы
  43. Тензорезисторы
  44. Как измерить сопротивление резистора
  45. Последовательное и параллельное соединение резисторов

Что такое резистор, виды и роль в электроцепи, проверка мультиметром

Резисторы их виды и обозначения на схемах

Все схемы  — большие и малые, сложные и не очень — собраны из определенного набора радиоэлементов. Одни из самых простых и в то же время самых распространенных — резисторы или сопротивления. О том, что это за элемент, для чего его ставят на схеме, какие бывают виды резисторов, — обо всем этом речь пойдет в этой статье.

Что такое резистор и для чего нужен

Пассивный элемент, имеющий определенное сопротивление (постоянное или переменное) называют резистором. Более точное определение вам не даст никто, но эта простая формулировка тем не менее отражает основное свойство этого радиоэлемента.

Для полноты картины, приводим определение из «Википедии»:

Резистор (англ. resistor, от лат.

resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Есть еще сопротивления с нелинейными характеристиками, которые изменяют параметры в зависимости от различных условий: температуры, напряжения, света и т.д.

Они хоть и являются сопротивлениями, но имеют отдельные названия (варистор, термистор и т.д.), немного иное обозначение и другие технические характеристики.

В этой статье речь пойдет о постоянных и переменных резисторах, но тех, которые имеют линейные характеристики (почти линейные, так как идеала нет).

Называют эти элементы либо «резистор» либо «сопротивление». Первое название — произошло от латинского resistо, что переводится как сопротивление. Оба названия отражают основное предназначение этого элемента — изменять сопротивление электрической цепи.

На схемах европейского происхождения постоянный резистор обозначается в виде небольшого прямоугольника. На американских схемах принято другое обозначение — в виде ломаной линии.

В любом случае рядом со значком стоит латинская буква R и число, которое обозначает номер элемента.

Как выглядит резистор: наиболее типичные виды постоянных резисторов и обозначение в схемах

В небольших схемах рядом с обозначением может стоять номинал, в больших в отдельной таблице (спецификации) прописан тип резистора и его параметры.

Обозначение резисторов на схеме с указанием номинального сопротивления

Без резистора не обходится ни одна схема. Ни электрическая, ни электронная. Назначение резисторов в цепи может быть таким:

  • для ограничения тока;
  • для создания падения напряжения до определенного значения.

Например, в цепи течет определенный ток, но надо использовать элемент, который не рассчитан на такой ток. В этом случае ставят резистор, после которого ток понижается до нужного уровня.

Что делает резистор в схеме? Понижает ток до приемлемого значения. В этом случае часто называют их  токоограничивающими — по той задаче, которую они выполняют.

Аналогично поступают и с напряжением, только рассчитывается в данном случае не ток, а напряжение.

Виды резисторов: внешний вид постоянных сопротивлений. Справа SMD резистор — предназначен для поверхностного монтажа

Если говорить о внешнем виде, чаще всего, представляют собой небольшого размера цилиндр, от торцов которого отходят монтажные ножки. Чаще всего они выполнены из проволоки, реже из металлической ленты. Бывают резисторы в виде прямоугольного параллелепипеда (керамические) и в виде небольшого прямоугольника (SMD технология) для поверхностного монтажа на печатных платах.

Виды резисторов по характеру сопротивления

Основная характеристика резисторов — собственно сопротивление, которое измеряется в «омах».  Обозначается единица измерения как «Ом» — по фамилии немецкого физика Георга Ома. Вторая характеристика — рассеиваемая мощность, измеряется в Ваттах (Вт).

Это та мощность, которую элемент может преобразовать в тепло без повреждения работоспособности. Рассеиваемая мощность иногда отражается на схеме в виде черточек на «теле» элемента (см. на рисунке ниже справа), но точно указывается в  спецификации.

В принципе, рассеиваемую мощность можно примерно определить по размерам элемента. Чем больше корпус, тем больше рассеиваемая мощность.

Обозначение рассеиваемой мощности постоянных резисторов на схеме

Существуют два типа резисторов по характеру сопротивления: постоянные и переменные. Постоянные не меняют свое сопротивление никогда (в идеале). Переменные изменяют, но принудительно.

Для этого надо передвинуть бегунок, покрутить ручку или специальный регулятор. Переменные резисторы могут быть регулируемые и подстроечные. У обоих видов можно изменять сопротивление в некотором диапазоне.

Только у регулируемых диапазон обычно шире. Именно они стоят на регуляторах громкости, частоты и т.д.

Переменный резистор часто можно увидеть в радиоприемниках

Есть также подстроечные резисторы, предназначенные для точной настройки заданных параметров радио- и электронных устройств в процессе их выпуска из производства при настройке после монтажа или в процессе ремонта. Как правило, они имеют не слишком широкий диапазон. На подстроечных моделях есть небольшой регулятор под отвертку (как правило).

По назначению

Рассмотрим еще виды резисторов по назначению. Они бывают общего и специального назначения. Сопротивления общего назначения имеют следующие параметры:

  • номинал от 1 Ом до 10 МОм,
  • мощность от 0,125 Вт до 100 Вт,
  • допуск точности не менее 20%, 10 %, 5%, 2% или 1%.

Они пригодны для работы в сетях напряжением не более  1000 В. Используются как токоограничители или в качестве нагрузок для активных элементов схем. Резисторы специального назначения превосходят «обычные» по одной или нескольким характеристикам. К ним относятся:

  • Изготовленные с высокой точностью (максимально допустимое отклонение номинала — 1%), имеющие высокую стабильность параметров. Называют их прецизионные и сверхпрецизионные.
  • Высокочастотные. Имеют очень небольшую собственную емкость, благодаря чему и применяются в высокочастотных схемах.
  • Высоковольтные (для сетей напряжением выше 1000 В).
  • Высокоомные. Номинал выше 100 МОм и напряжение не менее 400 В.Виды резисторов по назначению

Для ремонта бытовых приборов достаточно элементов с обычными характеристиками. А вообще, при замене стоит придерживаться правила: ставить элемент того же номинала и с теми же характеристиками.

Если элементная база старая и найти точно такой же экземпляр сложно или стоит он несоизмеримо, ищем аналог. При подборе аналогов номинал выбираем «один в один», а характеристики могут быть немного лучше.

Хуже брать не следует, так как это может стать причиной некорректной работы устройств.

Виды резисторов по способу изготовления и их особенности

Постоянные сопротивления изготавливают несколькими способами. От способа производства в некоторой степени меняются свойства, поэтому приходится знать еще и виды резисторов по способу изготовления. Они бывают:

  • Проволочные.
  • Непроволочные:
    • металлические;
    • композиционные;
    • фольговые (металлофольговые);
    • графитные.

Самые «древние» — проволочные. Они же самые недорогие. Зато непроволочные могут иметь очень малое допустимое отклонение от номинала, некоторые другие полезные особенности.

Проволочные

Проволочные резисторы представляют собой отрезок металлической проволоки, намотанной на керамическое основание. Проволока используется специальная — константановая для обычных, нихромовая — для высокоомных. Сверху витки проволоки могут быть:

  • залиты керамикой;
  • покрыты эмалью или лаком.

Некоторые виды резисторов проволочного типа можно отличить внешне: в керамическом прямоугольном корпусе и трубчатого типа (C5-35B или ПЭВР). Они явно отличаются от других. При этом ни тонкослойными, ни композиционными быть не могут.

Так выглядят проволочные резисторы разных видов исполнения

Другие по внешнему виду почти не отличаются. Разве что тем, что при сравнимых номиналах они будут больше по размеру. Это и понятно — проволока занимает больше места. По способу монтажа проволочные резисторы бывают — для монтажа на печатные платы (с монтажными отводами) или навесного монтажа. В последнем случае на плате должны быть предварительно установлены крепления.

Если разбить корпус проволочного резистора, увидим следующую картину

Есть у них одна особенность: значительная паразитная индуктивность. Из-за нее проволочные сопротивления не используют в схемах, работающих с высокочастотными переменными напряжениями. Для сетей постоянного напряжения или переменного, но небольшой частоты (50 Гц, к примеру), они подходят.

Непроволочные

Большинство современных резисторов выпускаются без проволоки, но многие из них делают по похожей методике. На диэлектрическое основание наносится слой токопроводящего вещества. Это может быть металл, сплав или композиционный материал. Поэтому их обычно называют «пленочными».

По толщине слоя этот вид резисторов делят на тонкопленочные (от долей микрона до 1-2 микрон) и толстопленочные. Чем меньше толщина пленки, тем выше сопротивление. Для получения больших номиналов могут на пленке нарезают канавку. Поверх пленка может покрываться защитным слоем (оксидная пленка или лак, краска), может накладываться еще слой керамики.

Конечно, при использовании различных материалов меняются технологические процессы, но в общем схема изготовления такова.

Строение пленочных резисторов разных видов

Итак, вот какие бывают пленочные резисторы:

  • Металлические. Это один из самых распространенных видов резисторов, так как они имеют достаточную точность и невысокую стоимость. Используют металлы — хром, палладий, тантал; сплав — нихром; металлокерамику — кермет. Преимущественно производятся нихромовые пленочные резисторы, так как у них малый температурный коэффициент сопротивления (с изменением температуры сопротивление почти не изменяется), мало греются, обладают стабильными параметрами. Имеют меньшие размеры по сравнению с углеродистыми.
  • Композиционные. Вместо металла на керамическое основание наносят композиты. Выпускаются 13 типов элементов этого вида. Все их можно разделить на две группы — высокоомные и высоковольтные (от 2,5 кВ до 60 кВ). Предназначены для работы в цепях переменного и постоянного тока. Их основной недостаток — высокий уровень токовых шумов — от 15 до 40 мкВ/В.
  • Фольговые. На диэлектрический корпус наклеивается тонкая или супер-тонкая фольга, покрывается сверху слоем диэлектрика. Эта технология позволяет получить резисторы высокой точности (прецизионные и суперпрецизионные). Металлофольговые резисторы отличаются очень высокой стабильностью параметров, в том числе их номинал почти не изменяется при изменениях приложенного напряжения. Но основной плюс — они мало шумят. Поэтому используются в усилителях, приемниках/передатчиках, измерительных приборах и специальном оборудовании.
  • Угольные или углеродистые. В качестве токопроводящего слоя используется графит. Могут быть пленочного типа или объемными. По номиналу бывают от 10 Ом до 10 МОм. Их плюсы — можно использовать в высокочастотных приборах, широкий диапазон эксплуатационных температур — от -60°C, до +125°C, имеют низкий уровень шумов. Недостаток — они сильно греются. Проводящий слой графита может нагреваться до 120°C (такой режим способны выдерживают длительное время). Использоваться могут в схемах переменного, постоянного и импульсного тока.

Так какие виды резисторов лучше использовать? Если вам нужна стабильность параметров и низкий уровень шумов — подойдут металлофольговые или пленочные металлические или металлокерамические.

Их же можно использовать в схемах, работающих на высокой частоте. Если особых требований нет (для постоянного напряжения или с частотой 50 Гц), обращать внимание на виды резисторов по способу производства нет смысла.

Ищите нужный номинал и требуемые характеристики.

Как проверить резистор

Для проверки резистора подойдет практически любой мультиметр. С постоянным резистором могут произойти только две неприятности:

  • Обрыв резистора — его сопротивление стремится к бесконечности;
  • Сильное изменение сопротивления.

В электрической схеме легко заметить подгоревший резистор — в этом случае он обязательно должен был подвергнуть прозвонке при помощи мультиметра. Необходимо заметить, что обрыв резистора может произойти и без изменения внешнего вида (без «подгорания»).

Процесс проверки резистора следующий:

  1. Определяете сопротивление по цифровой или цветовой маркировке;
  2. Выставляете мультиметр в режим измерения сопротивления исходя из номинала резистора;
  3. Проверяете соответствие сопротивления указанному на корпусе.

Если сопротивление резистора находится в допустимых пределах (для углеродистых отечественных резисторов С1-4 допустимые отклонения от номинала могут доходить до ±10 %), то резистор исправен. В противном случае он нуждается в замене.

Процесс проверки постоянных резисторов при помощи цифрового мультиметра продемонстрирован в видео ниже.

Проверка переменных резисторов немного сложнее. Необходимо проверить качество контакта щетки с токопроводящим элементом. В некоторых случаях неисправный переменный резистор можно отремонтировать.

Резисторы

Резисторы их виды и обозначения на схемах

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько постоянное, мы можем надежно контролировать в цепи любую из этих переменных, просто управляя двумя другими.

Возможно, самой простой для управления переменной в любой цепи является ее сопротивление.

Это управление сопротивлением можно реализовать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, созданы специально для создания точного количества сопротивления, добавляемого в схему.

Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды.

В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку в работающей схеме ими рассеивается электрическая энергия. Однако обычно резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и номиналы резисторов на схеме

Условное обозначение резистора на схеме согласно ГОСТу – прямоугольник размером 4 мм x 8 мм. В англоязычной литературе распространено обозначение резистора в виде пилообразной линии:

Рисунок 1 – Условное графическое обозначение резистора

Номиналы резисторов в омах обычно отображаются на схеме в виде чисел рядом с условным обозначением, а если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, таким как R1, R2, R3 и т.д. Как видите, обозначения резисторов могут быть показаны горизонтально или вертикально:

Рисунок 2 – Обозначение номиналов резисторов на схеме (резисторы 150 Ом и 25 Ом)

Ниже показано несколько примеров резисторов разных типов и размеров:

Рисунок 3 – Примеры резисторов

Также на схеме можно показать, что резистор имеет переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного для обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто имеет нестабильное сопротивление:

Рисунок 4 – Условное графическое обозначение переменного резистора

Фактически, каждый раз, когда вы видите обозначение компонента с нарисованной по диагонали стрелкой, это означает, что этот компонент имеет переменное, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным дополнением к обозначению электронных компонентов.

Переменные резисторы

Переменные резисторы должны иметь какие-то физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать, чтобы изменять величину электрического сопротивления. На фотографии ниже показаны устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Рисунок 5 – Потенциометр

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения.

Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше.

Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность.

Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах.

Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов посмотрите фотографию ниже.

Это изображение печатной платы: сборка, состоящая из изолирующих слоев стеклотекстолита и слоем проводящих медных дорожек, в которую можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены напечатанными метками. Резисторы обозначаются любой меткой, начинающейся с буквы «R».

Рисунок 6 – Пример резисторов на печатной плате

Эта конкретная печатная плата представляет собой дополнение к компьютеру, называемое «модемом», которое позволяет передавать цифровую информацию по телефонным линиям.

На плате этого модема можно увидеть, как минимум, дюжину резисторов (все с номинальной рассеиваемой мощностью 0,25 Вт).

Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами», или «чипами») также содержит свой собственный массив резисторов, необходимый для работы.

На другом примере печатной платы показаны резисторы, упакованные в еще меньшие корпуса, называемые SMD («surface mount device», «устройство поверхностного монтажа»). Эта конкретная печатная плата является нижней стороной жесткого диска компьютера; и снова припаянные к ней резисторы обозначены метками, начинающимися с буквы «R»:

Рисунок 7 – Пример резисторов на печатной плате

На этой печатной плате более сотни резисторов поверхностного монтажа, и это количество, конечно, не включает резисторы, встроенные в черные «чипы». Эти две фотографии должны убедить любого, что резисторы (устройства, которые «просто» препятствуют прохождению электрического тока) – очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схемах символы резисторов иногда используются для иллюстрации обобщенного типа устройств, выполняющих что-то полезное с электрической энергией.

Любое неконкретизированное электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схему с символом резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей какие-либо концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ резисторных схем

Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:

Рисунок 8 – Пример схемы

Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:

(R=frac{E}{I} qquad и qquad P=IE)

Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

(R = frac{10 В}{2 А} = 5 Ом)

(P = (2 А)(10 В) = 20 Вт)

Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность.

Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры.

Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла.

Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку.

Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов.

Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы.

По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала.

Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление.

Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике.

Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы.

В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Ключевые показатели эффективности (KPI)

Ключевые показатели эффективности резисторов для каждого материала можно найти ниже:

Ключевые показатели эффективности резисторов в зависимости от материалаХарактеристикаМеталлопленочные резисторыТолстопленочные резисторыТонкопленочные резисторыУглеродные композиционные резисторыУглеродные пленочные резисторы
Диапазон рабочих температур, °C-55 … +125-55 … +130-55 … +155-40 … +105-55 … +155
Максимальный температурный коэффициент сопротивления100100151200250–1000
Максимальное напряжение, В250–350250200350–500350–500
Шум, мкВ на 1 В приложенного постоянного напряжения0,50,10,145
Сопротивление изоляции, кОм1010101010
Изменение сопротивления при пайке, %0,200,150,0220,50
Изменение сопротивления при воздействии высокой температуры и влажности, %0,5010,50153,5
Изменение сопротивления при длительном хранении, %0,100,100,0052
Изменение сопротивления при работе в течение 2000 часов при температуре 70°C, %110,03104

Резюме

  • Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
  • Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.

Оригинал статьи:

Теги

ОбучениеРассеиваемая мощностьРезисторСопротивлениеСхемотехникаТемпературный коэффициент сопротивления / ТКС

Резисторы | маркировка резисторов ⋆ diodov.net

Резисторы их виды и обозначения на схемах

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств.

Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Главнейшим параметром любого резистора является сопротивление. Именно благодаря наличию сопротивления электронам становится сложнее перемещаться по электрической цепи, в результате чего снижается величина тока.

Ввиду этого, сопротивление выполняет не только положительную роль – ограничивает ток, протекающий через другие радиоэлектронные элементы, но также является и паразитным явлением – снижает коэффициент полезного действия всего устройства.

К паразитным относятся сопротивления проводов, различных соединений, разъемов и т.п. и его стремятся снизить.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом. Наиболее практическое применение получили килоомы, мегаомы и гигаомы.

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию.

Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций.

Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат.

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока, но его называют реостатом.

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции.

Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи.

Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Мощность рассеивания резистора

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока.

Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них.

В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I2R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P, тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P  можно посмотреть здесь.

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования.

Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия.

Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III.

Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%.

Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.

Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, класс точности и мощность рассеивания. Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв.

Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы.

Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Цветовая маркировка резисторов

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы.

Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора.

В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Маркировка SMD резисторов

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису ,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Что такое резистор

Резисторы их виды и обозначения на схемах

Резистор – это самый распространенный радиоэлемент, который используется в электронике.

Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор.

Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Виды резисторов

Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа –  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором.  У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения –  это варисторы. 

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а  также от импульсных скачков напряжения. Допустим  у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону.

Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства.

При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

На схемах варисторы обозначаются вот таким образом:

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

На схемах они обозначаются вот таким образом:

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

На схемах тензорезистор выглядит вот так:

Вот анимация работы тензорезистора, позаимствованная с Википедии.

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Как измерить сопротивление резистора

Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.

Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.

измерение сопротивления

Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.

Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.

формула сопротивления через закон Ома

Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!

Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет.

Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления.

Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула

Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.

лампа накаливания потребление тока

Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу  0,71 Ампер.

Получаем, что сопротивление раскаленной нити лампы в данном случае составляет

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

При последовательном соединении номиналы резисторов просто тупо суммируются

В этом случае

Хорошее видео по теме

по теме “резисторы”

Маркировка резисторов

Фоторезистор

RC цепь

Активное и реактивное сопротивление

Что такое сопротивление

Закон Ома

Сантехника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: