Схема подключения однофазного двигателя с конденсатором с реверсом

Содержание
  1. Реверс однофазного конденсаторного двигателя
  2. Устройство и принцип действия
  3. Схема запуска и подключения
  4. Коллекторный двигатель переменного тока
  5. подключение однофазного двигателя
  6. Однофазный асинхронный двигатель, схема подключения и запуска
  7. Отличие от трехфазных двигателей
  8. Как это работает
  9. Основные схемы подключения
  10. Другие способы
  11. С экранированными полюсами и расщепленной фазой
  12. с асимметричным магнитопроводом статора
  13. подбор конденсатора
  14. Подключение электродвигателя на 380 В от сети 220 В – 4 распространённых способа и их особенности
  15. Варианты подключения обмотки
  16. Определение схемы подключения
  17. С конденсатором
  18. с реверсом
  19. без конденсатора
  20. «звезда-треугольник»
  21. полезные советы
  22. Коротко о главном
  23. Отправим материал на почту
  24. Реверсивное подключение однофазного асинхронного двигателя своими руками
  25. Однофазный двигатель 220В — постановка задачи
  26. Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)
  27. Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)
  28. Вариант 3: смена пусковой обмотки на рабочую, и наоборот
  29. Важно понимать
  30. Схема подключения двигателя через конденсатор
  31. Схема подключения однофазного двигателя через конденсатор
  32. Схема подключения трёхфазного двигателя через конденсатор
  33. Онлайн расчет емкости конденсатора мотора
  34. Реверс направления движения двигателя

Реверс однофазного конденсаторного двигателя

Схема подключения однофазного двигателя с конденсатором с реверсом

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых — трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор — это обычно короткозамкнутая обмотка («беличья клетка») — медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) — оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие — сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов — 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие — возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются.

Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки.

Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового — в 2,5 раза больше.

Коллекторный двигатель переменного тока

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках — там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

Основные недостатки такого двигателя:

  • высокая стоимость;
  • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
  • значительный уровень шума, трудное управление, создание радиопомех.

Остается добавить, что при использовании устройств, содержащих однофазный электродвигатель, следует самое пристальное внимание уделить выбору его типа, схеме подключения, тому, как правильно осуществить расчет элементов.

Асинхронный двигатель – принцип работы и устройство

  • Устройство и принцип работы трехфазного асинхронного двигателя

  • Что такое статор и ротор и чем они отличаются

    • Произошла ошибка; возможно, лента недоступна. Повторите попытку позже.

    подключение однофазного двигателя

    Однофазный двигатель может быть коллекторным или с короткозамкнутым ротором. С коллекторным двигателем все достаточно просто: два выходящих из корпуса двигателя проводочка воткнули в розетку — подключение состоялось. С подключением однофазного двигателя с короткозамкнутым ротором придется повозиться. Все дело в определении выводов.

    Параллельно рабочей обмотке (РО) в однофазном двигателе подключается пусковая (ПО) для создания хоть какого-то вращающегося магнитного поля.
    Однофазный двигатель с четырьмя выводами имеет ПО постоянного подключения.

    Она действует в паре с основной, не отключаясь, только подключение делается через конденсатор для сдвига фазы (Рис.а). Схема подключения такого однофазного двигателя очень удобна, так как все проводочки легко доступны, их можно с помощью переключателя менять местами для выполнения реверса (Рис.а1).

    Определяются они без особого труда: вызвонить омметром и найти прозванивающиеся пары. Например, омметр определил замкнутую цепь первого вывода со вторым, а третьего — с четвертым. Значит, 1 и 2 — одна обмотка, 3 и 4 — другая. Четвертый провод соединяем со вторым (или первый с третьим, все равно) — это общий. Начало и конец не имеют значения.

    Далее все подключение по рисунку а или а1.

    Немного сложнее разобраться с двигателем с тремя выходящими жилами. В таких случаях ПО подключается кратковременно: двигатель раскрутился, и она отключается, иначе сгорит. Как происходит подобная коммутация?

    Для этого придумали пуско-защитное реле. Функция его заключается не только в подключении ПО, но и для создания ее оптимального времени отключения.
    Во время запуска через электромагнитную катушку проходит большой ток. В этот момент ее сердечник втягивается и воздействует на контакт, управляющий ПО (Рис, 1 и 2). После запуска ток падает, отпускается сердечник, пусковая цепь разрывается.
    При межвитковом замыкании в рабочей обмотке ток постоянно высокий, ПО остается в работе, двигатель задымился. Для защиты вмонтировано тепловое реле с биметаллической пластиной, отключающее Х3 от сети. Если двигатель в течение короткого времени то включится, то отключится, значит, срабатывает тепловая защита. Причина или в межвитковом замыкании, или в пониженном (повышенном) напряжении сети.

    Обратите внимание на странный, на первый взгляд, рисунок 3. Это крышка от пуско-защитного аппарата, на которой указана маркировка подключаемых к нему проводов и обозначена стрелка. С маркировкой все понятно — концы не перепутать при подключении.

    А вот стрелка указывает на положение релюшки в пространстве. она всегда должна быть обращена вверх. Будучи еще начинающим электриком, я ремонтировал стиральную машину. Перевернул ее вверх дном. Оказалось, всего-то надо ремень заменить.

    Заменил, попробовал включить — заработала… и задымилась, двигатель сгорел.

    Уже спустя некоторое время узнал, что на перевернутой релюшке контакт остается замкнутым, тогда как в нормальном положении под силой тяжести после отключения катушки он отпадает вниз. А у меня как раз в перевернутой машине оказался внизу. Просто надо было для пробного включения перевернуть аппарат, чтобы стрелка вновь показывала наверх.

    Как же выполняется подключение однофазного двигателя с неизвестными тремя проводами. Сопротивление ПО (Х1-Х3) в несколько раз больше сопротивления РО (Х2-Х3). Х3 выходит от места соединения ПО и РО (см. Рис. б).

    Сначала промаркируем жилы, чтоб не запутаться (те же Х1, Х2 и Х3). Замеряем сопротивление, например, между Х1 и Х2, получилось, скажем, 60 Ом. Замерили Х1-Х3 — 45 Ом. Между Х2 и Х3 — только 15. Все это записали. Смотрим самое большое (60) — общее всех обмоток. 15 — рабочая обмотка, 45 — пусковая. Находим тот проводок, с которым остальные два показывают 15 и 45 Ом. Это будет наш Х3. Можно открыть крышку двигателя и визуально определить ПО: она намотана более тонким сечением.

    Вот, пожалуй, и все!

    Однофазный асинхронный двигатель, схема подключения и запуска

    Схема подключения однофазного двигателя с конденсатором с реверсом

    Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал.

    Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу.

    В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах).

    Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь.

    Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220ВСхема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой.

    Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы.

    Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор.

    В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    в конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    после включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. одна из них движется через экранированную часть полюса. в результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    с асимметричным магнитопроводом статора

    особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса.

    для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении.

    улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    среди недостатков этих моделей асинхронных электродвигателей выделяют низкий кпд, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами.

    Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В.

    Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.
    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Подключение электродвигателя на 380 В от сети 220 В – 4 распространённых способа и их особенности

    Схема подключения однофазного двигателя с конденсатором с реверсом

    Надёжность, бесперебойность и неприхотливость в обслуживании трёхфазного асинхронного электромотора проверены временем, миллионами пользователей по всему миру и не требует доказательств.

    Тем более, он является самым распространённым, доступным и дешёвым на сегодня. Однако далеко не каждый имеет у себя источник тока на 380 В.

    Поэтому рассмотрим, что собой представляет подключение электродвигателя с тремя фазами к сети на 220 В, какие способы для этого существуют и каковы их главные особенности.

    Трёхфазный электродвигатель Источник ytimg.com

    Варианты подключения обмотки

    Асинхронный трёхфазный электромотор располагает тремя обмотками – для каждой фазы в отдельности – идущими в пазы статора. Однако для возникновения электродвижущей силы и, как результат, вращения ротора требуется их соединение друг с другом. Вариант подключения конкретного двигателя важно знать. Так как это поможет выбрать верную схему подключения его к сети 220В.

    Каждая из трёх обмоток отвечает своей фазе и имеет как начало, так и конец. При этом входы и выходы обозначаются соответствующими буквами и цифрами:

    Номенклатура двигателей, выпущенных в период Советского союза:

    1. Первая фаза С1-С4.
    2. Вторая фаза С2-С5.
    3. Третья фаза С3-С6.

    Обозначения современных моторов:

    1. Первая фаза U1-U2.
    2. Вторая фаза V1-V2.
    3. Третья фаза W1-W2.

    Подключение обмотки трёхфазного двигателя Источник autogear.ru

    Существует две основные схемы соединения обмоток в рассматриваемом типе двигателей:

    Все выходы обмоток соединены в одну точку, а входы, соответственно, к фазам. Схематическое изображение такого способа внешне напоминает звезду. При таком способе к каждой отдельной жиле прилагается фаза 220В, а двум последовательным – линейное 380В.

    Главный плюс такой схемы – приложение линейного тока одновременно к двум жилам, что значительно снижает пусковые токи и позволят ротору выполнять мягкий старт. Минусом является меньшая мощность из-за слабых токов в обмотке.

    Вход предыдущей обмотки соединяется с выходом последующей – и так по кругу. В результате схема напоминает треугольник.

    При линейном напряжении, равном 380В, токи в обмотке будут достигать существенно большего значения, чем в выше приведённом варианте. Это даст возможность проявить мотору существенно большее значение силы.

    Недостаток схемы – более сильные пусковые токи, способны привести к перегрузке сети.

    Схема «треугольник» Источник ytimg.com Полезно знать! Чтобы получить преимущества первой и избежать недостатков второй схемы, подключение электродвигателя 380 В и последующий его разгон осуществляют на «звезде», а затем его автоматически переключают на «треугольник».

    Определение схемы подключения

    Прежде чем выбрать ту или иную схему подключения мотора к 220 В, необходимо определить, какова схема подключения его обмотки и при каком номинале он вообще может эксплуатироваться. Для этого необходимо:

    • Найти и изучить на моторе таблицу с тех. характеристиками.

    В информационном поле содержится вся важная информация – обозначение типа соединения – треугольник или звезда – Y, мощность, количество оборотов, вольтаж (220 или 380, либо 220/380) и возможность подключения по конкретной схеме.

    • Вскрыть клеммную коробку и удостовериться на практике в правильности собранной схемы.

    Начало и конец каждой обмотки подписан в соответствии с вышеприведённой цифробуквенной номенклатурой. Пользователю остаётся изучить схему соединения по перемычкам: по какой схеме выполнено соединение – звездой или треугольником.

    Обратите внимание! Если на шильдике (таблице с информацией) указан знак Y и только 380В, то при подключении его по треугольнику, обмотка сгорит. Выполнить модернизацию такого мотора на 220В могут только профессиональные электрики. Поэтому нет резона делать его доработку, тем более, что сегодня существует множество экземпляров, способных работать альтернативно – и на 220 и на 380 вольт. Вскрытие клеммной коробки Источник pikabu.ru
    Каталог компаний, что специализируются на электротехнических работах

    Чтобы подключить трёхфазный электродвигатель асинхронного типа к сети на 220 вольт, существует несколько проверенных способов:

    1. С конденсатором.
    2. Без конденсатора.
    3. С реверсом.
    4. Комбинированной схемой «звезда-треугольник».

    Рассмотрим их более подробно.

    Важно! При подключении электромотора на 380 вольт к сети 220 В нужно быть готовым к понижению его мощности до 70% от заводского значения. Однако в бытовых условиях это вполне приемлемо и никак не отразится на характеристиках в эксплуатации. Подключение мотора 380 В на 220 В Источник ytimg.com

    С конденсатором

    наиболее популярным и доступным способом инициации моторов на 380 вольт от сети 220 в является схема с применением конденсатора. его роль сводится к созданию сдвига фаз в обмотках по отношению друг к другу, чтобы сформировать вращающееся магнитное поле.

    при наличии трёх фаз это явление происходит само собой – только одна не заставит вращать ротор.

    поэтому оптимальным методом, как подключить электродвигатель с 4 проводами на одной фазе, является применение пусковой обмотки, помимо основной, в электромоторах на 220в.

    для модификации на 380 в возможно два варианта подключения с конденсатором:

    • с рабочим конденсатором ср.
    • и параллельно подключёнными рабочим ср и пусковым конденсатором сп.

    во втором случае мотор запускается более плавно и безопасно. модуль сп включается на короткий промежуток времени и по мере достижения ротором необходимых оборотов отключается.

    выбор варианта запуска во многом определяется степенью нагрузки ротора во время запуска.

    так, если пуск происходит без усилия, применяется только ср, а если под нагрузкой, без свободного вращения, обязательно наличие сп.

    подключение двигателя с конденсаторами источник blogspot.com

    значение сп должно быть в 2-3 раза выше ср. при этом параметр ср рассчитывается по соответствующей формуле, исходя из схемы соединения обмотки:

    1. по схеме «треугольник» = 4800 * /.
    2. по схеме «звезда» = 2800 * /.

    где – номинал электротока мотора, а.

    – напряжение источника тока, в.

    совет! современные производители выпускают трёхфазные двигатели, адаптированные к работе от 220 в, оснащённые конденсаторами. соединение выполнено по схеме «звезда». главное их преимущество – плавный пуск и сохранение до 90 % мощности.

    с реверсом

    нередко встаёт вопрос о том, как подключить электродвигатель с 380 на 220 вольт, чтобы изменить вращение ротора на прямо противоположное. для этого нужно просто поменять фазу, подаваемую напрямую и через конденсатор поменять местами. в качестве примера:

    вращение по часовой стрелке:

    1. ноль на первом выводе.
    2. фаза от сети на втором.
    3. фаза через конденсатор на третьем.

    вращение против часовой стрелки:

    1. ноль на первом выводе.
    2. фаза от сети на третьем.
    3. фаза через конденсатор на втором.

    подключение с реверсом источник ytimg.com рекомендация! для удобства быстрого и частого переключения направления вращения двигателя применяется пакетник-переключатель однополюсного типа, работающий на два направления. в положении «0» мотор выключен, «1» – вращается в одном направлении, «2» – в противоположном.

    без конденсатора

    способ, как подключить электродвигатель на 380 в к сети на 220 вольт без использования конденсатора стал возможен благодаря наличию транзисторных или динисторных ключей. при этом в зависимости от количества оборотов в минуту применяются две различные схемы:

    • до 1,5 тыс. оборотов/мин –на треугольнике.
    • до 3 тыс. об/мин и нагрузке при запуске – на разомкнутой звезде.

    функционируют схемы по следующему алгоритму:

    1. напряжение подаётся на две точки ввода.
    2. подача тока на третий ввод осуществляется через r-c-цепь, задающую время.
    3. перемещением регулятора r1 и r2 задаётся интервал сдвига.
    4. динистор vs1 при наполнении конденсатора подаёт команду на открытие симистора vs2.

    особенность схемы на разомкнутой звезде в том, что неё включены пара замещающих конденсаторы электронных ключей.

    схема подключения без конденсатора источник asutpp.ru

    «звезда-треугольник»

    комбинированный способ, как подключить электродвигатель с 380 на 220 без потери мощности позволяет снизить нагрузку во время запуска. при этом схема основана на трёх пускателях:

    • к первому подсоединяется питающее напряжение.
    • ко второму подключается обмотка.
    • оставшиеся проводники соединяются со вторым и третьим пускателем.
    • после этого обмотка через второй пускатель объединяется с остальными фазами – по схеме «треугольника».
    • при подключении к фазе третьего пускателя оставшиеся выводы разъединяются, и схема работает уже по «звезде».

    одномоментный пуск второго и третьего пускателя недопустим – произойдёт короткое замыкание. для предотвращения этого устанавливается специальный блокиратор.

    смотрите в этом видео, как подключить трёхфазный двигатель по схеме «звезда-треугольник»:

    полезные советы

    Несколько полезных советов, как подключить электродвигатель с 3 проводами, чтобы избежать проблемы во время эксплуатации:

    1. Перед началом работы мотор рекомендуется испытать на холостом ходу, если он функционирует исправно – затем под нагрузкой.
    2. При сильном нагреве корпуса даже без нагрузки необходимо понизить ёмкость рабочего конденсатора.
    3. Если после пуска мотор просто гудит, но не вращает вал, то можно задать ему старт вручную – крутанув вал. Далее можно повысить ёмкость пускового конденсатора.
    4. При остановке двигателя под рабочей нагрузкой, следует повысить ёмкость рабочего конденсатора.

    Полезная информация! Правильно рассчитать ёмкость конденсатора можно только с учётом номинала мощности мотора. При недогрузке возникнет перегрев и ёмкость нужно будет снижать.

    Смотрите в ролике, как подключить мотора по схеме звезды или треугольника:

    Коротко о главном

    Подключить электродвигатель 380 на 220 вольт можно 4-мя основными способами:

    • С конденсатором.
    • Без конденсатора.
    • С реверсом.
    • По схеме «звезда-треугольник».

    Прежде чем начать работы по подключению, необходимо определить и удостовериться, каким образом соединена обмотка в клеммной коробке, а также узнать необходимые характеристики из технической таблицы. Выполнять электротехнические работы можно при наличии опыта, но лучше доверить её профессионалам с соответствующим допуском.

    Прочитать позже

    Отправим материал на почту

    Автор статьи

    Инженер-сметчик инженерных коммуникаций

    Сергей Михайлов

    Реверсивное подключение однофазного асинхронного двигателя своими руками

    Схема подключения однофазного двигателя с конденсатором с реверсом

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста.

    Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения.

    Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять? Однофазный двигатель 220В — как поменять направление вращения?

    Однофазный двигатель 220В — постановка задачи

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже (однофазный двигатель 220В)

    Схема подключения однофазного двигателя

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    Схема подключения однофазного двигателя

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    Переподключение пусковой намотки

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    Смена пусковой обмотки на рабочую, и наоборот

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечаются коричневым, синим и фиолетовым цветами.

    Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем.

    Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Схема подключения однофазного двигателя

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно понимать

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготавливаются из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три.

    Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть.

    Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    Ещё по теме:

    — Схемы подключения асинхронного и синхронного однофазных двигателей

    — Схемы подключения электродвигателя через конденсаторы

    — Реверсивная схема подключения электродвигателя

    — Плавный пуск электродвигателя своими руками

    —В чем разница асинхронного и синхронного двигателей

    — Переделка электрического двигателя с 380 на 220 Вольт

    — Как проверить электродвигатель

    — Ремонт электродвигателей

    Схема подключения двигателя через конденсатор

    Схема подключения однофазного двигателя с конденсатором с реверсом

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В.

    Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств.

    Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Полезное:  Подключение внешнего микрофона к ноутбуку

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    НАЖМИТЕ ТУТ И ОТКРОЙТЕ

  • Сантехника
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: