Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

Содержание
  1. Трансформатор для светодиодных ламп 12 вольт: отличия от блока питания, назначение
  2. Что представляет собой электронный трансформатор
  3. Почему нельзя использовать ЭТ со светодиодными лампами
  4. Понижающий трансформатор
  5. Как выбрать
  6. Особенности установки
  7. Трансформатор нагревается при работе
  8. Схемы подключения точечных светильников на 12 В и 220 В
  9. Где используют 220 В, а где 12 В
  10. Схема подключения на 220 В
  11. Лучевое соединение
  12. Соединение шлейфом
  13. Схема подсоединения на 12 В
  14. Сечение проводов
  15. Схема светодиодной лампы на 12 вольт – советы электрика – Electro Genius
  16. Особенности подключения светодиодов
  17. Определение полярности светодиода
  18. Расчет подключения светодиодов в схемах на 12 и 220 т
  19. Cхема светодиодной лампы на 220 В
  20. Типы светодиодов
  21. Устройство LED-лампы
  22. Ремонт своими руками
  23. Схемы подключения светодиодов к 220В и 12В
  24. Типы схем
  25. Обозначение на схеме
  26. Подключение светодиода к сети 220в, схема
  27. Подключение к постоянному напряжению
  28. Самый простой низковольтный драйвер
  29. Драйвера с питанием от 5В до 30В
  30. Включение 1 диода
  31. Параллельное подключение
  32. Последовательное подключение
  33. Подключение RGB LED
  34. Включение COB диодов
  35. Подключение SMD5050 на 3 кристалла
  36. Светодиодная лента 12В SMD5630
  37. Светодиодная лента RGB 12В SMD5050
  38. Понижающий трансформатор с 220 на 12 Вольт
  39. Устройство понижающего трансформатора
  40. Принцип работы понижающего трансформатора
  41. Как выбрать понижающий трансформатор
  42. Схема подключения понижающего трансформатора
  43. Понижающий трансформатор с 220 на 12 вольт купить

Трансформатор для светодиодных ламп 12 вольт: отличия от блока питания, назначение

Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

При установке светодиодных ламп на место галогенных часто возникает необходимость замены старого источника питания. Галогенные лампы подключаются к электротрансформаторам на 12В, светодиодные требуют установки специальных блоков питания, имеющих аналогичное выходное напряжение. В связи с этим важно разобраться, можно ли использовать старый трансформатор или следует его поменять.

Что представляет собой электронный трансформатор

Электронный трансформатор для галогенных лам не используется для светодиодов

Электронный трансформатор – это схема импульсного источника питания, в основу которой входит высокочастотный генератор, работающий на полупроводниковых ключах, и непосредственно сам трансформатор.

Питание такой схемы обеспечивается стандартной сетью переменного тока с напряжением 220В, но на выходе действующее значение находится в области 12В.

Сначала питание из электросетей подается на выпрямитель, а затем уже выпрямленное напряжение отправляется в узел генератора и силовых ключей.

Стандартный вариант реализации такой схемы – использование автогенераторного двухтактного типа, ключевой особенностью которого является отсутствие необходимости в использовании каких-либо специальных импульсных источников питания наподобие ШИМ-контроллеров. Автоматический генератор в данном случае переключает транзистор под воздействием напряжений, которые наводятся на обмотки трансформатора, а также обеспечивает положительную обратную связь.

Чтобы обеспечить нормальную работу светодиодных ламп, потребуется любой источник, обеспечивающий стабильное напряжение 12В на постоянной основе и минимизирующий пульсации. Для этого чаще всего используются именно упомянутые выше ИМС.

Обе схемы предусматривают использование интегрального ШИМ-контроллера, которым обеспечивается регулировка работы биполярных или полевых транзисторов. Помимо этого, выходной каскад схемы включает в себя выпрямитель, а также конденсаторы, которыми обеспечивается сглаживание пульсаций — они выступают в роли своеобразного фильтра.

В конечном итоге получается стабилизированный источник питания, пульсации которого соответствуют текущей нагрузке, а также емкости фильтрующих конденсаторов. При необходимости можно обеспечить его реализацию на автогенераторной схеме по аналогии с электронным трансформатором, используя дополнительно цепи обратной связи, чтобы обеспечить необходимую стабилизацию выходного напряжения.

Почему нельзя использовать ЭТ со светодиодными лампами

Есть пять причин, по которым нельзя обеспечивать питание светодиодных ламп, используя стандартные электронные трансформаторы:

  • Светодиодные лампы предусматривают необходимость постоянного напряжения, что обусловлено их нелинейной вольтамперной характеристикой и чувствительностью к любым отклонениям от номинального показателя напряжения. При малейшем превышении такие лампы в итоге могут быстро выйти из строя.
  • Электронные трансформаторы являются источниками переменного напряжения с высокой частотой, а показатели всплесков и пиков в некоторых ситуациях достигают 40В, что в итоге часто приводит к полной поломке светодиодов или же драйверов, использующихся в конструкции современных LED-ламп. Помимо этого, подобный подход чреват их нестабильной работой.
  • Электронные трансформаторы отличаются наличием в них минимальной нагрузки. Таким образом, если нагрузка подключенной лампы не будет достигать уровня, указанного на блоке питания, трансформатор может вообще не начать работать или же будет работать с повышенными пульсациями, отключаться. Это является критичным моментом, так как потребляемая мощность галогенных ламп значительно превышает аналогичные показатели у светодиодных.
  • Блоки питания, предназначенные для энергоснабжения светодиодных ламп, обеспечивают стабилизированное и постоянное напряжение.
  • Галогенные лампы отличаются непривередливостью к тому, идет через сеть постоянный или переменный ток. Роль играет только его напряжение. В связи с этим их можно подключать к любым источникам питания.

Классические электронные трансформаторы не могут использоваться в качестве источника питания любых светодиодных светильников. При замене ламп нужно будет обязательно подбирать специальный блок, обеспечивающий стабилизированное напряжение. Если проигнорировать это, можно столкнуться с преждевременным выходом из строя всех ламп.

Понижающий трансформатор

Понижающий трансформатор для LED-ламп

Стандартный срок службы светодиодных ламп в соответствии с характеристиками, заявленными производителями, составляет 4000 рабочих часов. Если не использовать в работе таких устройств специализированные понижающие трансформаторы, оставляя в качестве основы работы диод, период эксплуатации сокращается  до 1200 часов бесперебойной работы.

Если лампы устанавливаются в помещения с повышенной концентрацией влаги или постоянными перепадами температуры (сауны, бассейны), нужно использовать специальный понижающий трансформатор, оснащенный защитой от воздействия воды. Также важно убедиться в том, что общая нагрузка светодиодных ламп находится в пределах 60%.

Как выбрать

В выборе понижающего трансформатора для светодиодных ламп нет ничего сложного. При возникновении каких-нибудь трудностей всегда можно проконсультироваться с менеджерами компаний, которые продают такое оборудование. Самое главное – правильно рассчитать мощность.

Вычисляется сумма всех светодиодных светильников, установленных в помещении, к полученному результату добавляется 20%, так как в преимущественном большинстве случаев трансформатор используется только один.

К примеру, в комнате будет шесть ламп 12В, их сумма 72В. Устройства, имеющие номинал 60В, уже не могут использоваться. Нужно приобретать оборудование на 100В или сокращать количество источников света. Если поставить мощный трансформатор, можно добавить еще лампу.

Экономия зависит не от мощности используемых источников света, а от напряжения. Она обеспечивается за счет использования трансформатора, который значительно увеличивает срок службы LED-ламп.

Особенности установки

Трансформатор представляет собой выносное устройство, но такой тип установки не всех устраивает, так как не хочется портить интерьер дополнительным оборудованием. Скрыть такое устройство и при этом обеспечить себе нормальное взаимодействие с ним не составит труда, если в доме есть подвесные потолки или накладные стены.

В идеале устройства закрепляются на бетонной плите. Чтобы обеспечить к ним простой доступ, в поверхности стены или потолка делается маленький люк. Нужно учесть, что с течением времени устройство нужно будет менять, поэтому врезное отверстие должно соответствовать его габаритам.

Решение спрятать трансформатор в кладовке не всегда целесообразно, особенно если будет устанавливаться несколько устройств. До источника нагрузки должно идти не более 2 метров провода, поэтому расположить трансформатор далеко от светильника не получится. Чтобы избежать всех этих проблем, рекомендуется покупать светильники со встроенным трансформатором.

Трансформатор нагревается при работе

Если куплен новый трансформатор, который после подключения и включения начал сильно нагреваться, нужно провести несколько операций:

  1. Проверить нагрузку энергопотребления в помещении и соответствие допустимого номинала трансформатора количеству подключенных к нему ламп.
  2. Проверит разводку розеток и освещения по группам.
  3. Проверить идет ли нагрузка на устройство.
  4. Посмотреть отзывы в интернете по купленному устройству. Вполне возможно, приобретен некачественный трансформатор.

Если нагревается трансформатор, который используется уже несколько лет, это показатель износа оборудования. Следует поменять его на новый. Лучше не игнорировать эти сигналы, так как можно столкнуться с оплавлением корпуса, а это создаст риск пожароопасной ситуации.

Схемы подключения точечных светильников на 12 В и 220 В

Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

Используя декоративную отделку потолков и для более привлекательного вида, все больше используются точечные источники света.

И по своему техническому исполнению они могут работать от стандартного напряжения в 220 Вольт и от безопасного в 12 Вольт.

В этой статье мы рассмотрим принципиальные схемы подключения обоих вариантов и узнаем, в каких случаях применяется тот или иной вид точечного освещения.

Где используют 220 В, а где 12 В

Безопасное напряжение в 12 Вольт можно использовать абсолютно везде, вот только с экономической точки зрения это будет не совсем правильно.

Так как в этом случае вам нужно будет приобретать дополнительно понижающий трансформатор 220 на 12 Вольт, а если у вас предполагается довольно большое количество осветительных элементов и предполагается разбивка на группы, то на каждую нужно будет устанавливать отдельный понижающий трансформатор.

Поэтому рекомендованы низковольтные светильники использовать в таких помещениях, как: ванная комната, или же смотровая яма в вашем гараже.

А вот светильники на 220 Вольт отлично подойдут для: спальни, прихожей, кухни т. д.

Схема подключения на 220 В

Итак, вы решили, например, сделать освещение в зале. И при этом у вас предполагается все лишь одна группа освещения. В таком случае схема параллельного подключения в трехпроводной сети будет выглядеть так:

Существуют два варианта параллельного подключения светильников, а именно:

1. Лучевой. Это когда на каждую лампу приходит отдельный проводник.

2. Шлейфом. В этом случае на первый осветительный прибор поступает фаза и ноль, от первого на второй уходит отдельный кусок кабеля и так по порядку. Это значит, что кроме последнего источника света на все остальные идут два куска кабеля.

Давайте изучим эти варианты более подробно.

Лучевое соединение

Данный способ параллельного соединения считается наиболее эффективным. По причине того, если у вас выходит из строя одна из ламп, то не горит именно она, а все остальные прекрасно работают.

К недостатку можно отнести более высокий расход кабеля, а так же необходимость соединения в одну точку сразу большого количества фазных проводов.

И если расход кабеля это по сути своей мелочи, то вот долговечное соединение – задача сложная, но решаемая. Для этого нам с вами достаточно воспользоваться клеммной колодкой или же специальным ваго-разъемом.

С помощью специализированного ваго-разъема это соединение выполнить очень просто. Главное приобрести модель для параллельного подключения и желательно с пастообразным наполнителем. Это, конечно, дорого, но надежно и просто.

Так же, конечно, можно выполнить скрутку этих проводов, но потом обязательно нужно выполнить сварку.

Соединение шлейфом

Шлейфное соединение в основном используют в таком варианте, когда светильников довольно большое количество и необходимо сэкономить провод.

Недостатком такого способа соединения является то, что при выходе из строя одной лампы не будет гореть весь «хвост» осветительных приборов, идущих после нее.

Но выявить вышедшую из строя лампочку проще простого: повреждена именно та, оная идет сразу же после нормально работающей.

Для двух групп освещения схема будет выглядеть так

Принципиальная схема подключения равноценно подходит для всех видов параллельного включения.

Схема подсоединения на 12 В

Итак, вам нужно выполнить подсоединение именно 12 вольтовых светильников. Для этого в обязательном порядке нужно купить понижающий трансформатор 220/12 В.

Его устанавливают после выключателя и как можно ближе к светильникам.

Мощность трансформатора выбирается на 25-30 % больше, чем суммарная мощность всех ламп в данной группе освещения.

Например, у вас в общей сложности 6 точек, по 6 ватт каждая (в примере рассматриваются светодиодные лампы).

Получаем, что суммарная нагрузка будет равняться 36 ваттам, к этому показателю добавляем 25% запаса и получаем, что нам необходимо приобрести транс минимальной мощности в 45 Вт.

При разбивке освещения на группы приобретаем отдельный трансформатор на каждую из них. Схема подключения с трансформаторами на две группы выглядит так

Недостатком этих схем является то, что если из строя выйдет трансформатор, то нерабочей останется вся группа. Идеальным выходом из этого является подключение на каждую лампу отдельного транса.

В таком случае схемы параллельно соединяются сами трансформаторы, а уже к выходным клеммам трансов сажаются лампы. Это самый затратный способ из всех возможных вариантов. Но при этом если при перегорании лампы не горит лишь она, все остальные будут в работе.

Сечение проводов

Так как мы рассматриваем случай питания по 12 Вольтам, то это значит, что ток будет довольно больших значений, что приведет к большему нагреву и потери в проводах . Поэтому при подключении светильников на 12 В обязательно нужно учитывать длину и сечение питающего провода идущего после транса.

Чтобы воспользоваться таблицей, нужно узнать ток. Для этого делим мощность на напряжение. Например, подключаем 6 ламп, каждая мощностью по 12 вольт. Получается: 5*12/12 = 5 Ампер.

Выбираем близлежащее большее значение в таблице и видим, что при таком токе мы можем использовать кабель в полтора квадрата на длину линии до 7,4 метра.

Данный расчет действителен для шлейфного соединения, если у вас лучевая разводка, то для каждой лампы расчет производится отдельно.

Это все, что я хотел вам рассказать о вариантах схем подключения светильников на 12 и 220 Вольт. Надеюсь, моя статья оказалась вам полезна. Спасибо за внимание.

Уважаемый Читатель, моя статья оказалась полезна и интересна?! Тогда обязательно ставь палец вверх, подписывайся на мой канал ЭНЕРГОФИКСИК и делись статьей в соц. сетях. Мне очень важно чувствовать вашу поддержку. Ведь она позволит создавать еще больше качественных материалов. Если у Вас есть вопросы или предложения, то вот моя почта: nikolayMironov87@yandex.ru

Схема светодиодной лампы на 12 вольт – советы электрика – Electro Genius

Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции.

Поэтому у многих потребителей доно часто возникает вопрос, как подключить светодиод к 12 там. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток.

Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них.

Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи.

Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток.

Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор.

При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 т является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 т схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства.

Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению.

При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

В другом случае предлагается соединить каждый светодиод с отдельным резистором. Получается своеобразный стабилитрон, обеспечивающий корректную работу, поскольку токи приобретают независимость.

Однако данная схема получается слишком громоздкой и чрезмерно загруженной дополнительными элементами. В большинстве случаев ничего не остается, как подключить светодиоды к 12 там последовательно. При таком подключении схема становится максимально компактной и очень эффективной.

Для ее стабильной работы следует заранее позаботиться об увеличении питающего напряжения.

Определение полярности светодиода

Чтобы решить вопрос, как подключить светодиоды в цепь 12 т, необходимо определить полярность каждого из них. Для определения полярности светодиодов существует несколько способов.

Стандартная лампочка имеет одну длинную ножку, которая считается анодом, то есть, плюсом. Короткая ножка является катодом – отрицательным контактом со знаком минус.

Пластиковое основание или головка имеет срез, указывающий на место расположения катода – минуса.

В другом способе необходимо внимательно посмотреть внутрь стеклянной колбочки светодиода. Можно легко разглядеть тонкий контакт, который является плюсом, и контакт в форме флажка, который, соответственно, будет минусом.

При наличии мультиметра можно легко определить полярность. Нужно выполнить установку центрального переключателя в режим прозвонки, а щупами прикоснуться к контактам. Если красный щуп соприкоснулся с плюсом, светодиод должен загореться.

Значит черный щуп будет прижат к минусу.

Тем не менее, при кратковременном неправильном подключении лампочек с нарушением полярности, с ними не произойдет ничего плохого.

При подключении светодиодных лент и модулей, работающих от 12 т и выше, в схему обязательно добавляются резисторы.

Расчет подключения светодиодов в схемах на 12 и 220 т

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит.

Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 т в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора.

Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 там. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 т.

Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В.

Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.

2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.

свет = Rсвет х I = 220 х 0,007 = 1,54В.

Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду.

Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света.

Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Cхема светодиодной лампы на 220 В

> Лампы электрические > Cхема светодиодной лампы на 220 В

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

Ремонт светодиодной лампы своими руками

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

Ремонт своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Схемы подключения светодиодов к 220В и 12В

Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В.

Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение.

Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления.

Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться.

Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется.

Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают.

Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера.

Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока.

Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность.

Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся.

На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Понижающий трансформатор с 220 на 12 Вольт

Трансформатор 220 на 12 вольт для светодиодных ламп схема подключения

В частном доме или же в квартире большая часть электрических приборов имеет напряжение питания 220 Вольт, соответственно и электрическая сеть также имеет 220В. Но бывают случаи, когда нужно понизить напряжение до безопасных 12В для подключения светодиодных лент/ламп, галогенных ламп и других устройств, работающих от переменного тока.

Устройство понижающего трансформатора

Трансформатор – статичное электромагнитное устройство для преобразования переменного тока напряжения U1 в переменный ток напряжения U2, той же частоты.

Основными элементами конструкции являются:

  1. Магнитопровод, собранный из тонких листов электротехнической стали;
  2. Обмотки, выполненные медными или алюминиевыми проводами;
  3. Каркас для обмоток;
  4. Изоляция;
  5. Контактные вывода высокого и низкого напряжения (ВН и НН);
  6. Каркас для монтажа.

Принцип работы понижающего трансформатора

На так называемую первичную обмотку, подается напряжение от внешнего источника. Переменный ток, протекая по ней, создает переменный магнитный поток в магнитопроводе.

В результате электромагнитной индукции переменный магнитный поток в магнитопроводе создает во всех обмотках, в том числе и первичной, электродвижущую силу.

При подсоединении нагрузки на вторичную обмотку, магнитная индукция создает в витках вторичной обмотки напряжение, а от первичной обмотки будет поступать энергия, отдаваемая в цепь вторичной.

Как выбрать понижающий трансформатор

В первую очередь необходимо смотреть на его мощность и исполнение. Мощность обязана быть с запасом, то есть больше суммарной потребляемой мощности подключаемых светильников.

Пример. Допустим, имеется 5 лампочек мощностью по 10Вт и 5 лампочек по 15Вт. Суммарная мощность все сети освещения будет 125Вт, прибавим еще 20% и получим 150Вт. Таким образом, нам необходимо купить понижающий трансформатор 220/12В мощностью не менее 150Вт. Посещаем магазин, находим наиболее близкую мощность более 150 и покупаем.

При его монтаже на улице, потребуется устройство пылевлагозащищенного исполнения (лучше в корпусе из нержавеющей стали). Между тем, при большом расстоянии до светильников необходимо располагать трансформатор на улице. Это связано с падением напряжения на кабеле большей длинны.

Протяженность кабельной линии от источника до ламп обязана быть не более 3-5 метра. В случае если это расстояние увеличить, то в кабеле появятся большие потери (провод начнет греться).

Для количественной оценки падения напряжения в кабеле можно воспользоваться простой формулой:

Где

– суммарная мощность всех потребителей, подключенная к данному проводу, Вт;

– напряжение источника тока, как правило, 12В или 24В;

– длина провода, м;

– площадь сечения провода, мм²;

ρ – значение удельного электрического сопротивление, для меди это примерно 0,018 Ом·мм²/м, для алюминия – 0,0295 Ом·мм²/м;

Для количественной оценки падения мощности на проводах можно воспользоваться следующей формулой:

Если эта мощность получится слишком большой, то, единственное верное решение для уменьшения потерь – это увеличить сечение проводника, иначе останется только гадать, что случится раньше – возгорание проводов или выход из строя светильников.

https://www.youtube.com/watch?v=yGzvI1Wg4-gu0026list=RDCMUCeNpzcxM-hUhnabwC7oZeYwu0026start_radio=1

Но в том случае, когда удаленность потребителей до источника питания небольшое, трансформатор целесообразнее поставить в помещении, в непосредственной близости от источника питания 220 В – например, около щитка или в щите (на сегодняшний день производители изготавливают понижающие трансформаторы с креплением на DIN-рейку).

Понижающие трансформаторы на дин рейку легко устанавливаются в распределительные щиты и при этом в зависимости от модели занимают места всего от 2 до 6 модулей. Первичная обмотка у них электрически отделена от вторичной, что обеспечивает дополнительную защиту для людей. Имеется защита от перегрузок, выполненная на тепловое реле.

Схема подключения понижающего трансформатора

Наиболее замечательный и популярный пример, для наглядной схемы подключения — это подключение экономной системы освещения. Она необходима для реализации схемы освещения с меньшими показателями напряжения, чем классические 220 В. Чаще всего используются 12-вольтные галогенные лампы, которые применяют как в открытых, так и во встроенных светильниках.

Общая схема подключения со светильниками достаточно легка в исполнении и изображена на рисунке.

Понижающий трансформатор подключается через выключатель. Далее к нему параллельно подключаются светильники, при этом его роль заключается в снижении напряжения со стандартных 220 Вольт до 12 Вольт, требуемых для питания точечных галогеновых светильников.

Понижающий трансформатор с 220 на 12 вольт купить

На сегодняшний день в продаже имеются устройства различного исполнения и конструкции. Заказать или купить Вы можете как в розничных магазинах, так и в интернет магазинах. В последних, кстати, более выгодные цены.

Ниже Мы предлагаем Вам ознакомиться и сравнить несколько вариантов:

МодельОСЗ- 1,0ОСОВ-0,25ТП1-0,25ОСВМ-0,25ЯТП-0,25 Ориентировочная цена, рубот 6500от 2200от 5300от 5300от 1500
Внешний вид
Мощность, кВА10.250.250.250.25
Первичное напряжение, В220220220220220
Вторичное напряжение, В12, 24, 36,
42
12, 24, 36,
42, 110, 127
12, 24,
36, 42, 110
12, 24, 36,
42, 110, 127
12
Степень защитыIP20IP65IP20IP55IP31
Климатическое исполнениеУ2У5У2ОМ5УХЛ 4
Габариты, ммД – 275Ш – 155

В – 270 

Д – 200Ш – 200

В – 225

Д – 320Ш – 160

В – 302

Д – 200Ш – 200

В – 225

Д – 210Ш – 145

В – 145

Вес, кг165.9135.96.5
ОСЗ – однофазный, сухой, в защищенном исполнении
ОСОВ – однофазные, сухие, для местного освещения, водозащищенного исполнения
ТП – сухой однофазный
ОСВМ – однофазные, сухие, водозащищенного исполнения, морские
ЯТП – ящик с ОСЗ

Как видите, отличительной особенностью всех трансформаторов является конструктивное исполнение. Для наружной установки Мы рекомендуем выбрать типа ОСОВ или ОСВМ, так как они имеют водозащищенное исполнение.

Сантехника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: